More Numberphile-inspired stuff! 

More Numberphile-inspired stuff! Simon has been studying Mersenne Primes (2^n – 1) and their relation to perfect numbers via the Numberphile channel and heard Matt Parker say no one has proved that there are no odd perfect numbers (that perfect numbers are always even). In the video below, Simon tries to prove why all perfect numbers are even. Here is Simon’s proof: When calculating the factors of a perfect number you start at 1 and you keep doubling, but when you reach one above a Mersenne prime, you switch to the Mersenne prime, and then keep doubling again. Once you double 1, you get 2, so 2 is ALWAYS a factor of any perfect number, which makes them all even (by definition, an even number is one divisible by 2):

 

dsc_3541483407704.jpg

More topics Simon learned about from the Numberphile channel included:

The Stern-Brochot Sequence:

Stern-Brochot Sequence 16 Jan 2018

Prime Factors:

Prime Factors 16 Jan 2018

Checking Mersenne Primes using the Lucas-Lehmer Sequence. Simon’s destop could only calculate this far:

Checking Mersenne Primes 16 Jan 2018

The 10958 problem. Natural numbers from 0 to 11111 are written in terms of 1 to 9 in two different ways. The first one in increasing order of 1
to 9, and the second one in decreasing order. This is done by using the operations of addition, multiplication, subtraction, potentiation,
and division. In both the situations there are no missing numbers, except one, i.e., 10958 in the increasing case (Source). The foto below comes from the source paper, not typed by Simon, but is something he studied carefully:

10958 Problem 17 Jan 2018

Simon’s notes on the 10958 problem:

dsc_3552884572610.jpg

The Magic Square (adding up the numbers on the sides, diagonals or corners always results in the number you picked; works for numbers between 21 and 65):

dsc_3526717765599.jpg

dsc_35251678381008.jpg

Simon also got his little sis interested in the Magic Suare:

dsc_35351933176286.jpg

dsc_3539119604192.jpg

dsc_35441164956673.jpg

And, of course, the Square-Sum problem, that we’ve already talked about in the previous post.

dsc_3500164521074.jpg

Simon’s 3D version of the Square-Sum problem:

Square-Sum Problem 3D 17 Jan 2018

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s