Milestones, Murderous Maths, Simon teaching, Simon's sketch book

Simon’s proof that Phi is not transcendental

Simon has come up with a proof that Phi (the Golden Ratio) is an algebraic number (not transcendental). He proves it by showing that Phi can be the solution to a polynomial equation (which would be impossible if it was a transcendental number). Indeed, if you simplify Simon’s polynomial further, you can get x squared minus x equals one, which describes one of Phi’s remarkable qualities: the square of Phi (an infinite irrational fraction) equals exactly Phi plus 1. In fact, Simon has talked about this in his previous video (expressing Fibonacci sequence using Lucas Numbers):

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s