Geometry Joys, Murderous Maths, Simon teaching

Hyperbolic space

This is a model of hyperbolic space (7 triangles around a vertex). It’s an open problem of how far you can keep expanding your structure this way (possibly infinitely far, if you allow the surface to cross itself). Which is strange, because with 3, 4 or 5 triangles around a vertex you get a platonic solid, so you definitely can’t go on forever. If you put 6 triangles around a vertex, you end up tiling a plane, so you definitely can go on forever.

For 7 or more triangles, it’s this sort of saddle shape and we don’t know if we can go on forever. How far can you go even if you do it physically? Physically you’ll definitely end up not going on forever, but still interesting to see how far you can go.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s