Live Stream #15. Chapter 6 of Living Code: Particle Systems

Simon’s latest Live Stream about Chapter 6 of his “Living Code” Course (particle systems!), loosely based on Daniel Shiffman’s Nature of Code. “I’m also going to live stream a surprise maths video”, – at the beginning of the stream Simon devoted some time to the magic hexagon problem.

Advertisements

Live Stream #14. 15’s Puzzle Redo continued.

In this live session, Simon continue my 15s puzzle redo live session (“yet again, but I swear this is going to be the last time I do this!” Simon said). Here’s a link to the previous part. This week’s live stream went great, Simon kept it concise, didn’t panic while debugging, largely thanks to a wonderful supportive audience. And he even got some interesting personal questions asked in the end!

Magic Cards in Base 3!

 

Simon has developed his version of the Magic Cards, this time in Base 3. He invented this system completely on his own and actually created a program in Processing (Java), using ternary function, to make the cards! The the code for creating the five cards in Processing and exporting the images as png files is available on Simon’s page on GitHub: https://github.com/simon-tiger/browns-criterion-base3

To play the game, have someone think of a number between 0 and 242 and let that person look for his/her number on every card and tell you which colour it is on every card. Every card stands for a power of 3: 81, 27, 9, 3, and 1. There are three grids of numbers on every card, a blue grid (representing the zeros in base 3), a red grid (representing the ones in base 3), and a green grid (representing the twos in base 3). After your friend has found his/her number on all the five cards, you can go ahead and add all the results up to guess the number. Alternatively, if you find working with base 3 too difficult, just sum up all the red numbers in the top left corners (on all the cards where your friend’s number was red), then double all the red numbers in the top left corners (on all the cards where your friend’s number was green) and add all of those together to guess the number.

Simon started out by actually trying to draw the magic cards:

dsc_15031481291803.jpg

But quickly realised he’s better off writing a computer program to fill in the grids. When the program (pretty tough to write) was finally ready, he tried to print a card out and… ran out of ink on our home printer. Next, we rushed to the print shop, as it was about to close.

dsc_14991807313702.jpg

dsc_1502726101795.jpg

“Mom, I can calculate why it says 17 million colours! It’s 256 cubed!” (255 for Red, Green and Blue plus one for alpha).

dsc_1498591699534.jpg

Simon previously developed a magic card system for Prime Numbers and wrote a Java program that guessed the numbers using powers of two.

 

Liva Stream #13. Math Puzzle: Logic.

In this live session, Simon works a little on his 15s puzzle redo that he started in his previous live session: https://www.youtube.com/watch?v=ixkLFYcb0T0 and programs a math/logic puzzle, checking whether the statement “Every card with a T on one side has a 3 on the other” is true or false. The original puzzle comes from an old video by James Grime, recorded before Simon was born (the fact that Simon finds particularly funny):

Reds and Greens

Simon has crafted a nice game today, inspired by a video in which mathematician Katie Steckles shows several mathematical games. Simon wasn’t sure what the game was called so he named it “Reds and Greens”. The objective of the game is to accumulate a set of three cards sharing the same property (such as the same number of green dots or red dots, the same total number of reds and greens or a set in which all the three possible variants – one, two and three dots of the same color – would be present). Each player pulls a card from the stack (all the cards are lying face up) and the one who collects a set first wins. Simon has actually programmed the cards in Processing (Java) – quite a strenuous task. Below is the jpeg pic of what he made and his code in Processing.

Reds and Greens 10 Apr 2018

 

Reds and Greens Code 1 10 Apr 2018Reds and Greens Code 2 10 Apr 2018

Simon also explained how the game is very similar to Tic Tac Toe, look at the photo below and you’ll see why:

dsc_0935181490489.jpg

Live Stream #12: 15’s Puzzle Redo

Simon had quite an audience yesterday during his live lesson. In this week’s session, Simon remade his 15’s Puzzle in Processing and explained the math behind it. He plans to finish the puzzle during his next live stream in two weeks from now (on April 19 at 17:15 CET).

 

The Nine Digit Number Problem

Simon is working out a math problem looking for a nine digit number in which the first two digits firm a number divisible by 2, the first three digits form a number divisible by 3, the first four digits form a number divisible by 4 and so on, the whole number being divisible by 9. There is only one answer to this problem if one does not use zeros as digits.

Inspired by a SingingBanana Channel video.

dsc_0868-1359515574.jpg

dsc_0869-11017396496.jpg

Tantrix Game in JavaScript

Simon talking about his Tantrix Game code and the math behind it. It has been Simon’s first community project, many thanks to everyone who has contributed hexagonal tiles for the game! The game isn’t finished yet, but the video gives a good insight into the work in progress. Simon will finish it at a later date he says. Feel free to try and finish it on your own and share your results! The code is on GitHub at: https://github.com/simon-tiger/tantrix

This is a separate link to see what Simon has got so far in action: https://simon-tiger.github.io/tantrix/tantrix/

 

Below is Simon’s original YouTube post summoning contributions: