Simon speaking at the Processing Community Day in Amsterdam

https://www.youtube.com/watch?v=hiogZlqHf4Q

Simon had his first public performance in front of a large audience last Saturday (February 9, 2019): he spoke about his Times Tables Visualization project at the Processing Community Day in Amsterdam!

Simon writes: You can access the code of the poster and the animation (and the logo for my upcoming company!) and download the presentation in PowerPoint, on GitHub at https://github.com/simon-tiger/times_tables

If you’d like to buy a printed copy of the poster, please contact me and I’ll send you one. Status: 3 LEFT.

One of the tweets about Simon’s presentation

Advertisements

Getting ready for the Processing Community Day Amsterdam

Simon getting ready for his presentation at the Processing Community Day Amsterdam, printing additional copies of his ginormous Times Tables Visualization poster at the Antwerp Art Academy (made possible thanks to our wonderful friend, photographer Oxiea Villamonte). If you’re into creative coding and math, please come to the event (Simon will be speaking around 15 p.m.) There will be a limited number of Times Tables Visualization posters available for sale!

PCD Amsterdam

DAY: Saturday 9 February 2019

TIME: 10.00 – 19.00

WHERE: FIBER: Tolhuisweg 2, Amsterdam

Science Day in Belgium

Yesterday we attended one of the hundreds of Science Days venues open for free all over Belgium. Simon particularly enjoyed chemistry demos, even though he was disappointed that some companies showing their inventions didn’t want to share the actual formulas behind the tricks.

The simple non-newtonian fluid remains a favourite.

Making your own bath bombs.

Simon dazzled by how insulator foam (polyurethane) is produced as the result of a reaction between two highly viscous substances, an isocyanate and a polyol (polyether). Another fascinating thing about this demo was that the tool mixing the two ingredients actually employed magnets!

A workshop explaining why ships don’t sink and if they do, why:

Exploring 3D printing:

Programmable spheres:

Heat indicator (material changing color depending on water temperature):

The good old baking soda and vinegar demo revisited:

Molecules

Simon is seriously enjoying his new Molymod chemistry modeling sets and has been obsessing about which set contains what atoms and bonds.

Alcohol (Ethanol):

Hurray! We have just built 7,333333333333 x 10^-9 of the human DNA:

Glucose

Some like the football, Simon plays with the buckyball, or Buckminsterfullerine, made up of 60 carbon atoms:

Simon’s Times Tables Visualization is Now a Huge Poster!

Simon has made an enormous poster from his earlier animated version of the Times Tables Visualization! Simon is hoping to present this project at the Processing Community Day in Amsterdam in January 2019. The poster is already being printed!

 

Simon writes: This is a visualization for the times tables from 1 to 200.
Start with a circle with 200 points. Label the points from 0-199, then from 200-399, then from 400-599, and so on (you’re labeling the same point several times).

We’ll first do the 2x table. 2×1=2, so we connect 1 to 2. 2×2=4, so we connect 2 to 4, and so on.

2×100=200, where’s the 200? It goes in a circle so 200 is where the 0 is, and now you can keep going. Now you could keep going beyond 199, but actually, you’re going to get the same lines you already had!

For the code in Processing, I mapped the two numbers I wanted to connect up (call them i), which are in between 0 and 200, to a range between 0 and 2π. That gave me a fixed radius (I used 75px) and an angle (call it θ). Then I converted those to x and y by multiplying the radius by cos(θ) for x, and the radius by sin(θ) for y. That gave me a coordinate for each point (and even in between points, so you can do the in between times tables as well!) Then I connect up those coordinates with a line. Now I just do this over and over again, until all points are connected to something.

Unfortunately, Processing can only create and draw on a window that is smaller than a screen. So instead of programming a single 2000px x 4000px poster, I programmed 8 1000px x 1000px pieces. Then I just spliced them together.

Idea: Times Tables, Mandelbrot and the Heart of Mathematics video by Mathologer
Code: by Simon Tiger
Download the animated version here: https://github.com/simon-tiger/times_tables

Looking for Primes

Simon programmed this grid of numbers and then used Paint to color the numbers in that are multiples of other numbers, an Eratosthenes way to look for prime numbers. When he compared his result to the prime number table that he found online it turned out to be a complete match!

Prime Numbers 14 Nov 2018

Why Cookies Get Bigger in the Oven

dsc_2015-15037840452200116686.jpg

Simon is baking Dutch traditional “pepernootjes” (“pepper nuts” or spicy cookies) and explains why they get bigger in size after you put them in the oven and what the optimal tiling pattern is to fit a maximal number of cookies on the baking sheet.

Sugar and Salt

Want some me sugar in your tea?

Simon built this sucrose (table sugar) molecule with the help of Theodore Gray’s Molecules book (although he is pretty sure there is a mistake in the Dutch version of the book, on a different page, where the fructose, glucose and galactose molecular structures seem to be mixed up – the sucrose description helped him discover this as the table sugar molecule is made up of one fructose and one glucose molecule).

Simon is also fascinated how sugar and salt, substances that are easy to confuse on the kitchen table, are made of molecules that are so “wildly different”: