Coding, Computer Science, Experiments, JavaScript, Logic, Murderous Maths, Simon teaching, Simon's sketch book

Nash Equilibrium

Simon explaining the Nash Equilibrium with a little game in p5.js. Play it yourself at: https://editor.p5js.org/simontiger/sketches/lfP4dKGCs
Inspired by TedEd video Why do competitors open their stores next to one another? by Jac de Haan.

Electronics, Engineering, Experiments, Milestones, Physics

More Engineering. RAM Ready in the simulated 8-bit computer project in Circuitverse.

In October and early November, Simon was busy with another attempt to simulate SAP-1 (simple as possible processor, an 8-bit computer) in Circuitverse (something that he hadn’t managed to complete when he tried it last time). I’m not even sure if anyone uses Circuitverse for such large-scale projects.

Main

On November 7, Simon finally managed to finish the RAM on his simulated 8-bit computer (a computer where every general-purpose register contains 8 bits and therefore can only process 8 bits of data)! Although he is far from the end of the project, he is convinced that the RAM is the hardest part, so “now everything is going to be okay!”

“RAM was the hardest mainly because I have been trying to build the subcircuit for the RAM myself, which is not going to do it for SAP-2”,(Simon’s next ambition, also an 8-bit computer but with 64K memory, 2K PROM + 62K RAM). “This time the RAM I needed was particularly small, so I built a mini-RAM myself”.

The most difficult part, half of the mini-RAM. It doesn’t contain 16 bites, it contains 16 4-bit words or “nibbles” of memory

You can view and launch this (unfinished) project via this link: https://circuitverse.org/users/7241/projects/35775

All of Simon’s projects on his Circuitverse page: https://circuitverse.org/users/7241

Simon’s current plan is to record a series of videos based on the Digital Computer Electronics book he uses as a guide in his engineering projects.

Simon compiling a plan (in Microsoft Paint) based on the Digital Computer Electronics book contents

These are some simpler circuits from late September, simulated on Tinkercad:

Test circuit in Tinkercad on 30 September 2019
Test circuit in Tinkercad on 30 September 2019
JK Flipflop to create simple clock module in Tinkercad on 30 September 2019
Coding, Community Projects, Contributing, Experiments, JavaScript, live stream, Machine Learning, Milestones, Physics, Simon's Own Code

Simon’s Random Number Generator

This one’s back from mid-October, forgot to post here.

Simon created a random number generator that generates a frequency, and then picks it back up. Then, it calculates the error between the generated frequency and the picked up frequency. This is one of my community contributions for a Coding Train challenge: https://thecodingtrain.com/CodingChallenges/151-ukulele-tuner.html

Link to project: https://editor.p5js.org/simontiger/sketches/eOXdkP7tz
Link to the random number plots: https://www.wolframcloud.com/env/monajune0/ukalele%20tuner%20generated%20random%20number%20analysis.nb
Link to Daniel Shiffman’s live stream featured at the beginning of this vid: https://youtu.be/jKHgVdyC55M

plot of the random numbers generated by Simon’s ukulele tuner random number generator (plotted in Wolfram Mathematica)
Crafty, Electricity, Electronics, Engineering, Experiments, Geometry Joys, Notes on everyday life, Physics, Simon teaching, Together with sis

Vanishing Letters

Simon’s way to celebrate Helloween: a little demo about how red marker reflects red LED light and becomes invisible. A nice trick in the dark!

We also had so much fun with the blue LED lamp a couple days ago when Simon discovered that it projects perfect conic sections on the wall! Depending on the angle at which he was holding the lamp, he got a circle, an ellipse, a hyperbola and a parabola! Originally just a spheric light source we grabbed after the power went out in the bathroom, in Simon’s hands the lamp has become an inspiring science demo tool.

Crafty, Experiments, motor skills, Physics, Together with sis

Some Physics Demos with Geomag

Rotating a merry-go-round with a “magic wand”
One beautiful thing about Simon’s recent return to Geomag is that, as it turned out, he is now capable of building all the tricky constructions on his own, without any help from the grown-ups
An example of a Gaussian Gun, a magnetic chain reaction to launch a steel ball at high speed. As soon as the rolling ball hits the magnet, another ball in the opposite side is launched.
Experiments, Geometry Joys, Murderous Maths, Notes on everyday life, Physics, Together with sis

The Puzzle Man is Back!

Guess who was in town in mid-October? The amazing Vladimir Krasnoukhov, a one-of-kind puzzles inventor from Russia! (I know, I should’ve written about this earlier, but I’ve been lagging behind with my blog posts because of a really wicked bronchitis). He stopped by for a coffee and literally showered Simon with new mind boggling gifts!

Simon was especially impressed by the two physics demos that look like stuffed surfboards (Vladimir calls them “oysters”) and can only rotate in one direction due to the moment of inertia. Vladimir told us there have even been research papers written about these demos! Simon has been showing the trick to just about everyone who has visited our home ever since.

We have also received an especially difficult puzzle that took famous Russian physicist Sergei Kapitsa two hours to solve (Vladimir told me the answer, he didn’t want me to waste two months of my life) and several more colourful and elegant models. Simon is not even particularly keen on puzzles (when it comes to recreational maths, I think he is more into riddles and proves), it is Vladimir’s friendly disposition, his selfless devotion to mathematical beauty and his deep respect for a child’s intrinsic interests, his deep respect for children’s play in general, that have made our hearts melt. You can find out more about Vladimir Krasnoukhov’s puzzles on planetagolovolomok.ru

Simon rotating the “oyster”
chemistry, Experiments, Together with sis

MEL Chemistry Experiments: Foil Etching, Magnetizing Magnesium, Metal Contest

In the Foil Etching experiment we had copper burn a whole in the aluminium foil.

This is the reactivity chart from the MEL science website, as you see aluminium is a lot more reactive than copper

As you can see, aluminum Al is much more reactive than copper Cu, but nothing happens when aluminum foil comes into contact with the copper sulfate CuSO4 solution! How come? Unfortunately, it’s all a bit more complicated than it first looks. Being quite an active metal, aluminum Al  reacts with oxygen O2 in the air, forming a very strong film of aluminum oxide Al2O3 on its surface . This film protects the metal from reacting any further.

When you add some sodium chloride NaCl, a vigorous reaction starts as Cl ions are able to compromise the otherwise-strong Al2O3 shield. Once Cu2+ is face-to-face with the aluminum Al itself and not its Al2O3 shield, the reaction can proceed, and quite spectacularly!

the hole in aluminium foil as active aluminium atoms have fled

In the next experiment, we obtained a magnetic substance from two non-magnetic ones, magnesium Mg and iron sulfate FeSO4, via a simple chemical reaction! The Fe2+ from the FeSO4 solution turned into metallic iron Fe on the surface of the magnesium particles, so we ended up with magnesium shavings covered with a thin layer of iron! The picture below shows how the magnesium shavings actually hold a heavy neodymium magnet in the air!

a heavy magnet hanging on the bottom of a glass beaker thanks to electromagnetism

And lastly, we did what MEL Chemistry calls a “Metal Contest”, because here too, three metals (zink, copper and tin) were competing in reactivity. “If you arrange metals from more active to less active, you’ll see that zinc Zn is a more adventurous fellow than tin Sn and copper Cu. That’s why, when you put a zinc rod into a solution containing, say, copper ions Cu2+, the latter are happy to settle inside the comfortable cloud of electrons, forming metallic copper Cu on the surface of the rod. Zn ions Zn2+, in turn, go swimming in the solution. The reaction with the tin chloride SnCl2 solution is essentially the same”, MEL Science website explains.

copper and tin on the surface of the zink rods


Experiments, Geography, Milestones, Physics, Together with sis, Trips

CERN Open Days September 14 – 15, 2019

The most important experience was actually simply to see how huge the Large Hadron Collider is. We totally didn’t expect the site of every experiment on the 27km ring to resemble an industrial town in its own right, scattered miles across a desert-like terrain with the Mont Blanc and the Jura mountains as the scenic back drop. It was a challenge to walk between the activities we had carefully planned in advance only to find out that some of the were full or required an hour of waiting in line. But the kids have withstood these challenges heroically and were rewarded with a few unforgettable impressions.

In front of the CMS experiment
A schematic of the LHC
It all begins with simple hydrogen protons…
the waiting
Magnet levitation above superconductive material used at CERN to create strong magnetic field to bend the path of the particles
Cloud chamber: we have actually seen energetic charged particles leave traces in the alcohol vapor in real time, in the form of a trail of ionized gas! What we saw were mainly alpha particles and electrons, we were told, judging by the character of the trail they left. Cloud chamber detectors used to play an important role in experimental physics, this is how the positron was discovered! Simon was a bit sad he didn’t get to actually build a cloud chamber as part of a workshop (they didn’t allow anyone younger than 12 to do the workshop), but he was lucky to get a personal tour at another site, where a couple of cloud chambers were available for exploration.
Our wonderful guide computer scientist George Salukvadze showing us around at DUNE, the Deep Underground Neutrino Experiment. George told us the detectors they are building will be employed at Fermilab in the U.S. Among other things, George has done the programming for the live website (screen with liquid Argon).
Playing the particle identity game