Biology, Computer Science, Geography, Group, In the Media, Milestones, Murderous Maths, Notes on everyday life, Physics, Trips

World Science Scholars Feature Simon’s visit to CERN in a newsletter. The current course is about neurons. Reading Stephen Wolfram.

Simon’s September visit to CERN has been featured in a World Science Scholars newsletter:

Here’s our update on the World Science Scholars program. Simon has finished the first bootcamp course on the theory and quantum mechanics by one of program’s founders, string theorist Professor Brian Greene and has taken part in three live sessions: with Professor Brian Greene, Professor Justin Khoury (dark matter research, alternatives to the inflationary paradigm, such as the Ekpyrotic Universe), and Professor Barry Barish (one of the leading experts in gravitational waves and particle detectors; won the Nobel Prize in Physics along with Rainer Weiss and Kip Thorne “for decisive contributions to the LIGO detector and the observation of gravitational waves”).

September 2019: Simon at a hotel room in Geneva taking pat in his first WSS live session, with Professor Brian Greene
September 2019: screenshot from Professor Brian Greene’s course module on quantum physics

At the moment, there isn’t much going on. Simon is following the second course offered by the program, at his own pace. It’s a course about neurology and neurological statistics by Professor Suzana Herculano-Houzel and is called “Big Brains, Small Brains: The Conundrum of Comparing Brains and Intelligence”. The course is compiled from Professor Herculano-Houzel’s presentations made at the World Science Festival so it doesn’t seem to have been recorded specifically for the scholars, like Professor Brian Greene’s course was.

Professor Herculano-Houzel has made “brain soup” (also called “isotropic fractionator”) out of dozens of animal species and has counted exactly how many neurons different brains are made of. Contrary to what Simon saw in Professor Greene’s course (mainly already familiar stuff as both relativity theory and quantum mechanics have been within his area of interest for quite some time), most of the material in this second course is very new to him. And possibly also less exciting. Although what helps is the mathematical way in which the data is presented. After all, the World Science Scholars program is about interdisciplinary themes that are intertwined with mathematical thinking.

Screenshots of the course’s quizzes. Simon has learned about scale invariance, the number of neurons in the human brain, allometric and isometric scaling relationships.

Another mathematical example: in Professor Herculano-Houzel’s course on brains we have witnessed nested patterns, as if they escaped from Stephen Wolfram’s book we’re reading now.

screenshot from the course by Professor Herculano-Houzel

Simon has also contributed to the discussion pages, trying out an experiment where paper surface represented cerebral cortex:

The top paper represents the cerebral cortex of a smaller animal. Cerebral cortex follows the same physical laws when folding is applied.

Simon: “Humans are not outliers because they’re outliers, they are outliers because there’s a hidden variable”.

screenshot from Professor Herculano-Houzel’s course: after colour has been added to the plot, the patterns reveal themselves

Simon is looking forward to Stephen Wolfram’s course (that he is recording for world science scholars) and, of course, to the live sessions with him. The information that Stephen Wolfram will be the next lecturer has stimulated Simon to dive deep into his writings (we are already nearly 400 pages through his “bible” A New Kind of Science) and sparked a renewed and more profound understanding of cellular automata and Turing machines and of ways to connect those to our observations in nature. I’m pretty sure this is just the beginning.

It’s amazing to observe how quickly Simon grasps the concepts described in A New Kind of Science; on several occasions he has tried to recreate the examples he read about the night before.

Simon playing around in Wolfram Mathematica, after reading about minor changes to the initial conditions of an idealised version of the kneading process
Simon working out a “study plan” for his Chinese lessons using a network system model he saw in Stephen Wolfram’s book “A New Kind of Science”
Experiments, Geography, Milestones, Physics, Together with sis, Trips

CERN Open Days September 14 – 15, 2019

The most important experience was actually simply to see how huge the Large Hadron Collider is. We totally didn’t expect the site of every experiment on the 27km ring to resemble an industrial town in its own right, scattered miles across a desert-like terrain with the Mont Blanc and the Jura mountains as the scenic back drop. It was a challenge to walk between the activities we had carefully planned in advance only to find out that some of the were full or required an hour of waiting in line. But the kids have withstood these challenges heroically and were rewarded with a few unforgettable impressions.

In front of the CMS experiment
A schematic of the LHC
It all begins with simple hydrogen protons…
the waiting
Magnet levitation above superconductive material used at CERN to create strong magnetic field to bend the path of the particles
Cloud chamber: we have actually seen energetic charged particles leave traces in the alcohol vapor in real time, in the form of a trail of ionized gas! What we saw were mainly alpha particles and electrons, we were told, judging by the character of the trail they left. Cloud chamber detectors used to play an important role in experimental physics, this is how the positron was discovered! Simon was a bit sad he didn’t get to actually build a cloud chamber as part of a workshop (they didn’t allow anyone younger than 12 to do the workshop), but he was lucky to get a personal tour at another site, where a couple of cloud chambers were available for exploration.
Our wonderful guide computer scientist George Salukvadze showing us around at DUNE, the Deep Underground Neutrino Experiment. George told us the detectors they are building will be employed at Fermilab in the U.S. Among other things, George has done the programming for the live website (screen with liquid Argon).
Playing the particle identity game
Geography, history, Milestones, Murderous Maths, Museum Time, Notes on everyday life, Physics, Together with sis, Trips

Surrounded by the equations that changed the world

At the main entrance to CERN there is an impressive smooth curve of a memorial to the world’s most important equations and scientific discoveries:

Simon pointing to the Fourier transform function
Exercise, Geography, Notes on everyday life, Physics, Together with sis, Trips

Some more London

Taking the Thames Clipper
At London’s olympic pool: Simon and Neva took part in the Ultimate Aquasplash, an inflatable obstacle course for competent swimmers that involved sliding down a 3-meter high slide into deep water – another personal victory
At the Queen Elizabeth Olympic Park
Generating power on a bicycle (you could see how many watt you generate)
At a 3D film for the first time
Back to the Science Museum
Astronomy, Experiments, Geography, history, Milestones, Notes on everyday life, Physics, Space, Together with sis, Trips

We’ve found the real 0° meridian!

And it turned out to be a that little path next to the Royal Observatory in Greenwich, not the Prime Meridian line. The 0° meridian is what the GPS uses for global navigation, the discrepancy results from the fact that the Prime Meridian was originally measured without taking it into consideration that the Earth isn’t a perfect smooth ball (if the measurements are made inside the UK, as it it was originally done, this does’t lead to as much discrepancy as when vaster areas are included).

Simon standing with one foot in the Western hemisphere and the other one in the Eastern hemisphere
The GPS determines the longitude of the Prime Meridian as 0.0015° W
Simon tried to use JS to program his exact coordinates, but that took a bit too long so we switched to the standard Google Maps instead
The Prime Meridian from inside the Royal Observatory building
Looking for the real 0° meridian: this is an open field next to the Royal Observatory. At this point, the SatNav reads 0.0004° W.
And we finally found the 0° meridian! Some 100 meters to the East of the Prime Meridian
The 0° meridian turned out to intersect the highest point on the path behind Simon’s back!
Simon and Neva running about in between the measurements of longitude
Astronomer Royal Edmond Halley’s scale at the Royal Observatory
Halley’s scale is inscribed by hand
Coding, Computer Science, Crafty, Geography, Murderous Maths, Notes on everyday life, Simon's sketch book

Pathfinding algorithms: Dijkstra’s and Breadth-first search

The photos below show Simon playing with Breadth-first search and Dijkstra’s algorithms to find the most efficient path from S to E on a set of graphs. The two more complex graphs are weighed and undirected. To make it more fun, I suggest we pretend we travel from, say, Stockholm to Eindhoven and name all the intermediate stops as well, depending on their first letters. And the weights become ticket prices. Just to make it clear, it was I who needed to add this fun bit with the pretend play, Simon was perfectly happy with the abstract graphs (although he did enjoy my company doing this and my cranking up a joke every now and then regarding taking a detour to Eindhoven via South Africa).

this was an example of how an algorithm can send you the wrong way if it has data of the “right” way being weighted more (due to traffic jams, for example)
Coding, Computer Science, Crafty, Geography, Geometry Joys, Murderous Maths, Simon's sketch book

Dijkstra’s pathfinding algorithm

“I have first built a maze, then I turned it into a graph and applied Dijkstra’s pathfinding algorithm!”

a maze to which Dijkstra’s pathfinding algorithm is applied

Simon learned this from the Computerphile channel. He later also attempted to solve the same maze using another pathfinding algorithm (A-Star).