Community Projects, Contributing, Math Riddles, Math Tricks, Milestones, Murderous Maths, Simon teaching, Simon's sketch book

Simon having fun solving math puzzles on Twitter.

While in Southern France, Simon really enjoyed solving this puzzle (he originally saw in a vid). He was so happy with his solution he kept drawing it out on paper and in digital apps, and later shared the puzzle on Twitter. This sparked quite a few reactions from fellow math lovers, encouraged Brilliant to tweet new puzzles and now Brilliant follows Simon on Twitter, how cool is that!

Crafty, Geometry Joys, Math Tricks, Murderous Maths, Simon teaching, Simon's sketch book

Inscribed angle theorem

“It reveals itself once you complete the rectangle to find the centre. Because, of course, the diagonal passes through the centre once you inscribe a rectangle inside the circle, because of the symmetry”.
Tiling the quadrilaterals Simon has crafted applying the inscribed angle theorem.
Tiling the “shapes generated by the inscribed angle theorem”
“The theorem says that if you have a circle and just three random points on it, then you draw a path between te first point to the second, to the centre, to the third point and back to the first point”.
Geometry Joys, Math Tricks, Murderous Maths, Simon teaching, Simon's sketch book

Triangular, Square, Pentagonal, Hexagonal Numbers

Applying one of his favorite materials – checkers – Simon showed me the tricks behind polygonal numbers. The numbers written in pen (above) correspond to the actual triangle number (red rod) and the row number (blue rod).
Square numbers
Pentagonal numbers
And the next pentagonal number
(Centered) Hexagonal numbers
Fragment of the next (centered) hexagonal number
The following morning I saw that Simon came up with these general formulae to construct square, pentagonal and hexagonal numbers using triangle numbers. The n stands for the index of the polygonal number. Later Simon told me that he had made a mistake in his formula for the hexagonal numbers: it should not be the ceiling function of (n-1)/2, but simply n-1, he said.

I asked Simon to show me how he’d come up with the formulae:

Here is a square number constructed of two triangle numbers (the 5th and the 4th, so the nth and the n-1st)
The working out of the same construction. In the axample above n equals 5, so the 5th square number is indeed 25.
The nth pentagonal number constructed using three triangle numbers: the nth triangle number, and two, n-1st triangle numbers.
The working out of the pentagonal number formula
The nth hexagonal number
The formula for calculating the nth hexagonal number from six n-1st triangle numbers plus 1. (Simon later corrected the (n+1) into (n-1)).
Coding, Math Riddles, Math Tricks, Murderous Maths, Python

Number Guessing Game

Simon writes: Made a little game where the computer thinks of a number 1-100, and you try to guess it within 7 takes! Hint: the algorithm is called “Binary Search”.
You can also play the fullscreen version here:

Now also a reversed version, where you think of a number and the computer guesses it:

Codea, Coding, Experiments, Math Tricks, Murderous Maths, Simon's Own Code, Simon's sketch book

Chaos Game and the Serpinski Triangle

Monday morning Simon showed me the Chaos Game: he created three random dots on a sheet of paper (the corners of a triangle) and was throwing dice to determine where all additional dots would appear, always half-way between the previous dot and one of the corners of the triangle.

Very soon, he found it too much work to continue and I though he gave up. Later the same day, however, he suddenly produced the same game in Codea, the points filling in much faster than when he did it manually, yet following exactly the same algorithm. To my surprise, what resulted from this seemingly random scattering of dots was a beautiful Serpinski triangle.

How come a dot never happens inside one of the black triangles in the middle? – I asked.
Sometimes you start there, but the next dot (half-way towards one of the corners) is already outside the black triangle, Simon showed. (The screenshot above is of such an occurance. If you look carefully, you will see a dot in the middle).
Math Riddles, Math Tricks, Murderous Maths, Simon's sketch book

Math Fun

magic rectangle
magic square
challenging Dad to guess what the magic square and the magic rectangle are
fun multiplication shortcuts
favourite problem (Simon has actually carried out an experiment with in real life marbles is a sack to see whether the probability predicted is correct)

Simon finds the explanation on incomplete, so he started a discussion about it on the Brilliant community page:

challenging Dad with the problem
chalenging Dad with the problem (Simon has also taken this problem to show to his French teacher)
Crafty, Math Tricks, Murderous Maths, Together with sis

A Fun Fibonacci Puzzle

Here is a fun math trick! Simon and Neva have made a 8 x 8 cm square (with an area of 64 cm²) and cut it into four pieces, turning the square into a puzzle. Using the same four pieces, they built a 5 x 13 cm rectangle. But wait a minute! 5 x 13 equals 65, so the area of the rectangle is one cm² larger than that of the square!

They also made a similar puzzle using bigger pieces. A 13 x 13 = 169 cm² square turned into a 8 x 21 = 168 cm² rectangle! So now the area of the rectangle is one cm² smaller than that of the square! What’s gong on?

You have probably recognized the numbers in this trick: 5, 8, 13, 21… Those are Fibonacci numbers! Simon explains, that with Fibonacci numbers, the effect of the rectangle area being greater or smaller than the square area is alternating. Fibonacci have a converging ration to φ (Phi), but not φ. The pieces only look like they are golden ratio bigger/ smaller. In reality, there is a little gap between the pieces in the first rectangle and a little overlap in the second.

Simon has been inspired by Mathologer to build this.

the 8 x 8 square
the 5 x 13 rectangle
the 13 x 13 square
the 8 x 21 rectangle
Math Tricks, Milestones, Murderous Maths, Simon teaching, Simon's sketch book

The Math Behind 2048

Simon shares his strategy to win a 2048 game. He has also worked out a general formula of what a maximum tile can be in any grid. For a 4 x 4 grid classic 2048 grid that maximum is 2^17 or 131072!

“It’s a lovely coincidence that there are 17 particles known in the Standard Model of particle physics, and 2^17 is also the maximum value tile in 2048. And so LHC 2048 actually exists!” Simon shouted after we had finished filming. Ten minutes later, walking outside, he calculated that when playing simplest version of 2048, the game of 4 on a 2 x 2 grid, the probability of winning (getting 4) is 19% if you do nothing, 54% if you make one move and 27 % if you make two moves. He also proved that in the game of 4, you win with the maximum of two moves.

2048 offers a lot of opportunities for math fun!