# Supersymmetry: Why do we need the Future Circular Collider?

This is the text of the mini-lecture on Supersymmetry that nuclear physicist Filip Moortgat kindly gave us during our visit to CERN and the Large Hadron Collider last week.

Filip Moortgat: Supersymmetry stands out among all the other Beyond Standard Model theories (like extra dimensions and so on). It’s particularly interesting because it answers multiple things at the same time. I would say that most other extensions of the Standard Model solve one problem but not five like supersymmetry.

The first problem: because it connects the internal property of a particle to spacetime, it actually opens a way of gravity entering the Standard Model. As you know, the main problem with the Standard Model is that gravity is not in there. So one of the major forces that we know exists is not in there. Nobody has succeeded to make gravity part of it in a way that is consistent. People hope that supersymmetry can do it, although we’re not there yet.

The second problem is called the hierarchy problem. What that means is that you have a base  mass for a particle and then you have corrections to it from all the other particles. What happens is that if you don’t have any other particles beyond the Standard Model particles you get corrections that become gigantic. What you need to do is tune the base mass and these corrections so that you get the mass that we measured for the Higgs Boson or for the w and z bosons. It’s like 10^31 minus 10^31 is a 100 type of tuning, and we find it unnatural. It’s ugly mathematics. In supersymmetry, you get automatic cancelation of these big corrections: You get a big one and then you get minus the big one (the same correction but with a minus in front of it), it cancels out and it’s pretty, it’s beautiful.

The third thing is dark matter, a big problem. 85 procent of the matter in the universe is dark matter (if you also include the energy in the universe, you get different numbers). And the lightest stable supersymmetry particle is actually a perfect candidate for dark matter, in the sense that it has all the properties and if you compute how much you expect it’s exactly what you observe in the universe. It works great. It doesn’t mean that it’s true, it would work great if you could find it.

And then there’re more technical arguments that make things  connect together in nicer ways than before. Normally, the electric symmetry is broken in the way that everything becomes zero. All the masses would be zero, the universe would just be floating particles that wouldn’t connect to each other, it would be very boring. But that’s not what happened. To show what actually happened you need to drive one mass squared term negative, which is kind of weird but that is what supersymmetry does automatically! Because the top quark mass is so heavy. Heavier than all the other quarks. For me it’s the most beautiful extension of the Standard Model that gives you a lot of solutions to problems in one go.

The problem is that we haven’t seen anything, yet! We have been looking for it for a long time and we have absolutely zero evidence. We now have reasons to believe that it’s not as light as we have originally thought, that it’s a little bit heavier. Which is not a problem. The LHC has a certain mass range, for supersymmetry it’s typically up to a couple of TeV. But it could be 10 TeV and then we couldn’t get there, we can only get up to 2 or 3 TeV. It could be factor 10 heavier than we think!

This why we are starting to discuss the planning of the Future Collider that will be able to go up the spectre of 10 TeV in mass, for supersymmetry and other theories. There’re several proposals, some of them are linear colliders, but my favourite one is a 100 km circular collider which will connect to the LHC, so that we have one more ring. That ring will actually go under the lake and that would be quite challenging, but in my opinion – although we don’t have any guarantee – we will then have a very good shot, at least in terms of supersymmetry. At the LHC we also have a good shot but don’t have enough reach that we need to really explore the supersymmetry.

When we use conservation of energy and momentum at the collision point, what we do is we measure everybody, we sum it all up and what we need is we need to get the initial state. If something is lacking, then we know there’s something invisible going on. It could be neutrinos, or neutralinos, or it could be something else. So we have to look at the properties and the distributions to figure out exactly what we’re seeing. It’s not a direct detection but it’s a direct derivation if you want, from not seeing something, from lacking something, that we can still say it is consistent with neutralinos.

How do you know if it’s neutrinos or neutralinos?

Neutrinos we know well by now so we know what to expect with neutrinos. Otherwise it could be neutralios but it could be something else. And then to actually prove that it’s neutralinos we have a long program of work.

And is that mainly math?

No, it’s everything. It needs all the communities to work together, because we need to measure certain properties, distributions with the detector and we will need the theoretical ideas on how to connect these measurements to the properties of the particle. So we will need both the mathematical part and the experimental part. Translating the mathematics into the particle predictions, we will need all of that.

# On top of The Shard, the tallest building in the EU

A real victory for Simon, who has had a bit of a fear of heights for years. But what he found most impressive were the noticeable changes in gravity while going up and down with the elevator. When descending from the 72nd floor he could feel the decreased G!

# We’ve found the real 0° meridian!

And it turned out to be a that little path next to the Royal Observatory in Greenwich, not the Prime Meridian line. The 0° meridian is what the GPS uses for global navigation, the discrepancy results from the fact that the Prime Meridian was originally measured without taking it into consideration that the Earth isn’t a perfect smooth ball (if the measurements are made inside the UK, as it it was originally done, this does’t lead to as much discrepancy as when vaster areas are included).

# All Nerds Unite: Simon meets Steve Mould and Matt Parker in London

Hilarious, inspirational and loaded with cosmic coincidences, this was one of the best evenings ever! Many of our currently favourite themes were mentioned in the show (such as the controversy of Francis Galton, the BED/ Banana Equivalent Dose, sound wave visualizations, laser, drawing and playing with ellipses, Euler’s formula). Plus Simon got to meet his teachers from several favourite educational YouTube channels, Numberphile, StandUpMaths and Steve Mould.

# Heat Equation Visualization

A visual solution to Fourier’s heat equation in p5. Play with the two versions online:
https://editor.p5js.org/simontiger/present/EaHr9886H
https://editor.p5js.org/simontiger/sketches/EaHr9886H

Inspired by 3Blue1Brown’s Differential Equations series.

# The Brachistochrone

Simon believes that he has found a mistake in one of the installations at the Technopolis science museum. Or at least that the background description of the exhibit lacks a crucial piece of info. The exhibit that allows to simultaneously roll three equal-weight balls down three differently shaped tracks, with the start and the end at identical height in all the three tracks, supposes that the ball in the steepest track reaches the end the quickest. The explanation on the exhibit says that it is because that ball accelerates the most. Simon has noticed, however, that the middle track highly resembles a cycloid and says a cycloid is known to be the fastest descent, also called the Brachistochrone Curve in mathematics and physics.

In Simon’s own words:

You need the track to be steep, because then it will accelerate more – that’s right. But it also has to be quite a short track, otherwise it takes long to get from A to B – which is not in the explanation. It’s not the steepest track, it’s the balance between the shortest track and the steepest track.

Galileo Galilei thought that it is the arc of a circle. But then, Johan Bernoulli took over, and proved that the cycloid is the fastest.

The (only) most elegant proof I’ve seen so far is in this 3Blue1Brown video: https://www.youtube.com/watch?v=Cld0p3a43fU

There’s also a VSauce1 video, where they made a mechanical version of this (like Technopolis): https://www.youtube.com/watch?v=skvnj67YGmw

We’ve also made some slow motion footage of us using the exhibit (you can see that the cycloid is slightly faster, but as far as I can tell, it’s not precision-made, so it wasn’t the fastest track every time): https://www.youtube.com/watch?v=5Brub0FnpmQ

I hope that you could mention the brachistochrone/ cycloid in your exhibit explanation. I don’t think you can include the proof, because for such a general audience, it can’t fit on a single postcard!

# A lot of fluid dynamics at Technopolis

Here Simon explains one more effect he has played with at home, the Magnus effect.

# Simon’s Community Contribution: Variation of 2D Casting Coding Challenge in p5.js

This is Simon’s version of Daniel Shiffman’s 2D Casting code, made on Wednesday last week right after the live session. Link to the live session including the coding challenge.

Code and interactive animation are online at: https://editor.p5js.org/simontiger/sketches/ugHX4yKQC
Play with the animation online at:
https://editor.p5js.org/simontiger/present/ugHX4yKQC
https://editor.p5js.org/simontiger/full/ugHX4yKQC

Simon has also made one more, optimized version of this project (with fewer rays, runs faster): https://editor.p5js.org/simontiger/present/F6TCHAZs_
https://editor.p5js.org/simontiger/sketches/F6TCHAZs_

Both of Simon’s versions have been added to the community contributions on the Coding Train website: https://thecodingtrain.com/CodingChallenges/145-2d-ray-casting.html