Curent Events, Electricity, Electronics, Engineering, Physics, Simon's sketch book, Together with sis

Discussing the news: dangers of shorting your mobile

Today we have heard about a new accident involving a teenager electrocuted by her mobile phone. Luckily, this time it was not a lethal case, but a quick search on the web has revealed that this is no joke: several teens have died in just a few years because they were either holding their phone with wet hands while the phone was being charged at the same time, or dropped their phone into the bath tub while the phone was plugged in, or because they were using wired headphones while charging their phone!

At first Simon and I didn’t believe this could be so dangerous, as he knew for sure that a mobile phone adaptor always has a voltage control built into it that reduces the voltage from 220V to something like 5 to 20V. But then we dove into it and found out that apparently, once a short circuit occurs, the adaptor’s voltage control unit also malfunctions and lets the 220V current through!

Simon’s drawing of the adaptor

Biology, Computer Science, Geography, Group, In the Media, Milestones, Murderous Maths, Notes on everyday life, Physics, Trips

World Science Scholars Feature Simon’s visit to CERN in a newsletter. The current course is about neurons. Reading Stephen Wolfram.

Simon’s September visit to CERN has been featured in a World Science Scholars newsletter:

Here’s our update on the World Science Scholars program. Simon has finished the first bootcamp course on the theory and quantum mechanics by one of program’s founders, string theorist Professor Brian Greene and has taken part in three live sessions: with Professor Brian Greene, Professor Justin Khoury (dark matter research, alternatives to the inflationary paradigm, such as the Ekpyrotic Universe), and Professor Barry Barish (one of the leading experts in gravitational waves and particle detectors; won the Nobel Prize in Physics along with Rainer Weiss and Kip Thorne “for decisive contributions to the LIGO detector and the observation of gravitational waves”).

September 2019: Simon at a hotel room in Geneva taking pat in his first WSS live session, with Professor Brian Greene
September 2019: screenshot from Professor Brian Greene’s course module on quantum physics

At the moment, there isn’t much going on. Simon is following the second course offered by the program, at his own pace. It’s a course about neurology and neurological statistics by Professor Suzana Herculano-Houzel and is called “Big Brains, Small Brains: The Conundrum of Comparing Brains and Intelligence”. The course is compiled from Professor Herculano-Houzel’s presentations made at the World Science Festival so it doesn’t seem to have been recorded specifically for the scholars, like Professor Brian Greene’s course was.

Professor Herculano-Houzel has made “brain soup” (also called “isotropic fractionator”) out of dozens of animal species and has counted exactly how many neurons different brains are made of. Contrary to what Simon saw in Professor Greene’s course (mainly already familiar stuff as both relativity theory and quantum mechanics have been within his area of interest for quite some time), most of the material in this second course is very new to him. And possibly also less exciting. Although what helps is the mathematical way in which the data is presented. After all, the World Science Scholars program is about interdisciplinary themes that are intertwined with mathematical thinking.

Screenshots of the course’s quizzes. Simon has learned about scale invariance, the number of neurons in the human brain, allometric and isometric scaling relationships.

Another mathematical example: in Professor Herculano-Houzel’s course on brains we have witnessed nested patterns, as if they escaped from Stephen Wolfram’s book we’re reading now.

screenshot from the course by Professor Herculano-Houzel

Simon has also contributed to the discussion pages, trying out an experiment where paper surface represented cerebral cortex:

The top paper represents the cerebral cortex of a smaller animal. Cerebral cortex follows the same physical laws when folding is applied.

Simon: “Humans are not outliers because they’re outliers, they are outliers because there’s a hidden variable”.

screenshot from Professor Herculano-Houzel’s course: after colour has been added to the plot, the patterns reveal themselves

Simon is looking forward to Stephen Wolfram’s course (that he is recording for world science scholars) and, of course, to the live sessions with him. The information that Stephen Wolfram will be the next lecturer has stimulated Simon to dive deep into his writings (we are already nearly 400 pages through his “bible” A New Kind of Science) and sparked a renewed and more profound understanding of cellular automata and Turing machines and of ways to connect those to our observations in nature. I’m pretty sure this is just the beginning.

It’s amazing to observe how quickly Simon grasps the concepts described in A New Kind of Science; on several occasions he has tried to recreate the examples he read about the night before.

Simon playing around in Wolfram Mathematica, after reading about minor changes to the initial conditions of an idealised version of the kneading process
Simon working out a “study plan” for his Chinese lessons using a network system model he saw in Stephen Wolfram’s book “A New Kind of Science”
Experiments, Milestones, Physics, Electronics, Engineering

More Engineering. RAM Ready in the simulated 8-bit computer project in Circuitverse.

In October and early November, Simon was busy with another attempt to simulate SAP-1 (simple as possible processor, an 8-bit computer) in Circuitverse (something that he hadn’t managed to complete when he tried it last time). I’m not even sure if anyone uses Circuitverse for such large-scale projects.

Main

On November 7, Simon finally managed to finish the RAM on his simulated 8-bit computer (a computer where every general-purpose register contains 8 bits and therefore can only process 8 bits of data)! Although he is far from the end of the project, he is convinced that the RAM is the hardest part, so “now everything is going to be okay!”

“RAM was the hardest mainly because I have been trying to build the subcircuit for the RAM myself, which is not going to do it for SAP-2”,(Simon’s next ambition, also an 8-bit computer but with 64K memory, 2K PROM + 62K RAM). “This time the RAM I needed was particularly small, so I built a mini-RAM myself”.

The most difficult part, half of the mini-RAM. It doesn’t contain 16 bites, it contains 16 4-bit words or “nibbles” of memory

You can view and launch this (unfinished) project via this link: https://circuitverse.org/users/7241/projects/35775

All of Simon’s projects on his Circuitverse page: https://circuitverse.org/users/7241

Simon’s current plan is to record a series of videos based on the Digital Computer Electronics book he uses as a guide in his engineering projects.

Simon compiling a plan (in Microsoft Paint) based on the Digital Computer Electronics book contents

These are some simpler circuits from late September, simulated on Tinkercad:

Test circuit in Tinkercad on 30 September 2019
Test circuit in Tinkercad on 30 September 2019
JK Flipflop to create simple clock module in Tinkercad on 30 September 2019
Coding, Community Projects, Contributing, Experiments, JavaScript, live stream, Machine Learning, Milestones, Physics, Simon's Own Code

Simon’s Random Number Generator

This one’s back from mid-October, forgot to post here.

Simon created a random number generator that generates a frequency, and then picks it back up. Then, it calculates the error between the generated frequency and the picked up frequency. This is one of my community contributions for a Coding Train challenge: https://thecodingtrain.com/CodingChallenges/151-ukulele-tuner.html

Link to project: https://editor.p5js.org/simontiger/sketches/eOXdkP7tz
Link to the random number plots: https://www.wolframcloud.com/env/monajune0/ukalele%20tuner%20generated%20random%20number%20analysis.nb
Link to Daniel Shiffman’s live stream featured at the beginning of this vid: https://youtu.be/jKHgVdyC55M

plot of the random numbers generated by Simon’s ukulele tuner random number generator (plotted in Wolfram Mathematica)
Crafty, Electricity, Electronics, Engineering, Experiments, Geometry Joys, Notes on everyday life, Physics, Simon teaching, Together with sis

Vanishing Letters

Simon’s way to celebrate Helloween: a little demo about how red marker reflects red LED light and becomes invisible. A nice trick in the dark!

We also had so much fun with the blue LED lamp a couple days ago when Simon discovered that it projects perfect conic sections on the wall! Depending on the angle at which he was holding the lamp, he got a circle, an ellipse, a hyperbola and a parabola! Originally just a spheric light source we grabbed after the power went out in the bathroom, in Simon’s hands the lamp has become an inspiring science demo tool.

Computer Science, Engineering, Good Reads, Math and Computer Science Everywhere, Murderous Maths, Notes on everyday life, Physics, Simon teaching, Simon's sketch book, Together with sis

Zutopedia, a fun Computer Science Resource

Through the whole moth of October, Simon really loved watching Computer Science and Physics videos by Udi Aharoni, a researcher at IBM research labs and creator of the Udiprod channel https://www.youtube.com/user/udiprod and the Zutopedia website http://www.zutopedia.com/ Simon’s favourite has been the Halting Problem video that he also explained to his little sister.

In the example below, Simon has applied a compression algorithm to a sentence by transforming the sentence into a tree where all the letters have their corresponding frequencies in this sentence. “Can you get back to the sentence? You have to first transform the letters into ones and zeros using the tree (the tree is a way to encode it into ones and zeros that’s better than ASCII)”.

Simon learned this at http://www.zutopedia.com/compression.html
thanks to the Udiprod channel, Simon has also revisited sorting algorithms and spent hours comparing them, this time using self-made number cards
Crafty, Experiments, motor skills, Physics, Together with sis

Some Physics Demos with Geomag

Rotating a merry-go-round with a “magic wand”
One beautiful thing about Simon’s recent return to Geomag is that, as it turned out, he is now capable of building all the tricky constructions on his own, without any help from the grown-ups
An example of a Gaussian Gun, a magnetic chain reaction to launch a steel ball at high speed. As soon as the rolling ball hits the magnet, another ball in the opposite side is launched.
Experiments, Geometry Joys, Murderous Maths, Notes on everyday life, Physics, Together with sis

The Puzzle Man is Back!

Guess who was in town in mid-October? The amazing Vladimir Krasnoukhov, a one-of-kind puzzles inventor from Russia! (I know, I should’ve written about this earlier, but I’ve been lagging behind with my blog posts because of a really wicked bronchitis). He stopped by for a coffee and literally showered Simon with new mind boggling gifts!

Simon was especially impressed by the two physics demos that look like stuffed surfboards (Vladimir calls them “oysters”) and can only rotate in one direction due to the moment of inertia. Vladimir told us there have even been research papers written about these demos! Simon has been showing the trick to just about everyone who has visited our home ever since.

We have also received an especially difficult puzzle that took famous Russian physicist Sergei Kapitsa two hours to solve (Vladimir told me the answer, he didn’t want me to waste two months of my life) and several more colourful and elegant models. Simon is not even particularly keen on puzzles (when it comes to recreational maths, I think he is more into riddles and proves), it is Vladimir’s friendly disposition, his selfless devotion to mathematical beauty and his deep respect for a child’s intrinsic interests, his deep respect for children’s play in general, that have made our hearts melt. You can find out more about Vladimir Krasnoukhov’s puzzles on planetagolovolomok.ru

Simon rotating the “oyster”
Experiments, Geography, Milestones, Physics, Together with sis, Trips

CERN Open Days September 14 – 15, 2019

The most important experience was actually simply to see how huge the Large Hadron Collider is. We totally didn’t expect the site of every experiment on the 27km ring to resemble an industrial town in its own right, scattered miles across a desert-like terrain with the Mont Blanc and the Jura mountains as the scenic back drop. It was a challenge to walk between the activities we had carefully planned in advance only to find out that some of the were full or required an hour of waiting in line. But the kids have withstood these challenges heroically and were rewarded with a few unforgettable impressions.

In front of the CMS experiment
A schematic of the LHC
It all begins with simple hydrogen protons…
the waiting
Magnet levitation above superconductive material used at CERN to create strong magnetic field to bend the path of the particles
Cloud chamber: we have actually seen energetic charged particles leave traces in the alcohol vapor in real time, in the form of a trail of ionized gas! What we saw were mainly alpha particles and electrons, we were told, judging by the character of the trail they left. Cloud chamber detectors used to play an important role in experimental physics, this is how the positron was discovered! Simon was a bit sad he didn’t get to actually build a cloud chamber as part of a workshop (they didn’t allow anyone younger than 12 to do the workshop), but he was lucky to get a personal tour at another site, where a couple of cloud chambers were available for exploration.
Our wonderful guide computer scientist George Salukvadze showing us around at DUNE, the Deep Underground Neutrino Experiment. George told us the detectors they are building will be employed at Fermilab in the U.S. Among other things, George has done the programming for the live website (screen with liquid Argon).
Playing the particle identity game