# My little pure connections to Simon, now 10 years old

What do I love most about Simon’s learning style and being around him are the precious moments he pulls me out of my regular existence, sits me down next to him and shares a piece of his sharp vision with me. I often take notes to make sure I haven’t missed out on the details. Reading back the notes I am often surprised at the hidden layers in his razor-sharp logic that hadn’t revealed themselves to me at first or had even seemed irrelevant to my journalist mind eager to cramp everything to the size of a cocktail bite. Sometimes, Simon takes over and types the rest of the blog entry himself. Like this time.

Dad says he saw someone by the swimming pool reading the book A Mathematician’s Apology. We google it and find out it’s a 1940 essay by British mathematician G. H. Hardy about the beauty of pure mathematics. Knowing how much Simon is drawn towards pure mathematics and that he, too, prefers pure mathematics to applied mathematics, I tell him about our discovery. Simon replies that it’s a silly question to ask him whether he knows Hardy: Yes, Hardy was actually the one who invited Ramanujan!

Simon pauses his breadboard tutorial, comes to the balcony with the view across the Cote D’Azur, sits down against the wall of bright purple flowers and patiently tells me an interesting fact about Hardy. It’s just a fleeting tiny conversation, but the beauty of Simon’s precise memory, the connection I feel to Simon and the setting is so striking I would rather grab my video camera but I don’t dare move as not to lose momentum. I later ask Simon to repeat the facts he told me so spontaneously.

“Hardy came up with the total number of chess games. Well, Shannon estimated it to be 10^120, however Hardy estimated it to be 10^…, 10^50.

Clarification: the former is:

1 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000

(1 with 120 zeros)

And the latter is:

1 with 100 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 zeros

(1 with, a 1 with 50 zeros, zeros)