Computer Science, Crafty, Electricity, Electronics, Engineering, Logic, Milestones, motor skills, Simon teaching

Simon building an 8-bit Computer from scratch. Parts 1 & 2.

Parts 1 and 2 in Simon’s new series showing him attempting to build an 8-bit computer from scratch, using the materials from Ben Eater’s Complete 8-bit breadboard computer kit bundle.

Simon is learning this from Ben Eater’s playlist about how to build an 8-bit computer.

In Part 1, Simon builds the clock for the computer
In Part 2, Simon builds the A register (more registers to follow).
these little black things are an inverter (6 in one pack), AND gate and OR gate (4 AND and OR gates in one pack)
this schematic represents the clock of the future 8-bit computer
Simon and Neva thought the register with its LED lights resembled a birthday cake
Electricity, Electronics, Logic, Simon teaching

Simon has been bitten by the hardware bug again!

It’s all Ben Eater‘s fault! Simon is more of a software and pure math champion, but Ben Eater’s videos have sparked Simon’s interest in logic and electronics, anew. Back in mid July (yes, I know, I’m a little behind with the blog), while waiting for his Complete 8-bit breadboard computer kit bundle to arrive from the US, Simon was playing with virtual circuits that he built on two wonderful platforms: Circuitverse.org and Logic.ly. You can view Simon’s page on Circuitverse at https://circuitverse.org/users/7241

Simon’s favourite was building the Master-Slave JK Flip-Flop https://circuitverse.org/simulator/edit/20037

Simon gave me a whole lecture on the differences between Sequential and Combinational Logic: in the former, there’s a presence of a feedback loop (the output actually goes back to somewhere else in the circuit), and the latter has everything going in one direction (the inputs come in and the outputs go out).

It’s a little bit like the difference between a Feed Forward neural network where the output only depends on the input and a recurrent neural network where the output also depends on what the output was previously,

Simon explained.

Here’s a problem with sequential logic circuits: they go crazy like this very often (confused NOR gate). That’s why most sequential logic circuits have a clock in them. A clock acts like a delay so that it won’t go crazy.

That’s the power of sequential logic: you can have the same input but a different output. This is useful for storing data: I release the input, but the data is stored. It can only be archived in sequential logic.

The delay comes in error detection (on the rising edge of the square wave).

Master-Slave JK Flip-Flop
https://circuitverse.org/simulator/edit/20037

The following circuits are buit in Logicly https://logic.ly/demo

SR Latch in Logic.ly
D Flip-Flop
SR Flip-Flop
Master-Slave JK Flip-Flop
Simon building circuits together with his uncle whom he has met for the first time (Russian)