Discovering Antwerpen, Group, Milestones, Murderous Maths, Notes on everyday life, Set the beautiful mind free

Auditing a class at the university

Simon’s just finished auditing a class at the University of Antwerp. His first experience at the university came via a road less traveled. But then again, one may argue that we all walk the road less traveled because there’s no “normal pathway” that fits everyone.

Last spring, I shared a few videos of Simon studying at home and a couple of university professors in his MathsJam club mentioned he would probably enjoy a course in Complex Analysis (Calculus with complex numbers). I grabbed that opportunity and asked whether they would actually allow him to sit in the lectures.

Simon audited the course for one full semester (September to December), with me accompanying him to all the lectures to make sure he didn’t disturb anyone with his “youthful enthusiasm”. Before we arrived at the first lecture, I’d made it clear to Simon that we absolutely must remain silent in class. I wasn’t sure he would manage to control himself, for the main reason that had never managed to do so before, not even at the theatre. But then again, maybe at the theatre he sensed that the condition wasn’t as crucial. On our first day, I knew the professor was nervous about Simon possibly disturbing the class, I was nervous myself and I couldn’t believe how nervous Simon suddenly was. There was one thought nagging me: Have I spoiled it by my stern warning about keeping quiet?

Simon kept incredibly quiet. He didn’t even dare introduce himself. I had never seen him this way before. The professor was relieved, even elated. On my part, I was shocked by the high level of the course and whether Simon was too tense to tune in. The course turned out to be for college seniors; in Simon’s case, possibly a year or two too early. With Simon you never know. He always learns top down, and when I say “top” I mean Mount Everest top. “We try a couple more lectures and then see if it’s too much for you”, I told Simon.

The second and the third time, he was still quite nervous, but later he let go of most of that tension. Several times he got very bored, two hours felt like a long time for him to sit quietly. Still he said he didn’t intend to quit. And once, at the end of October, at the moment when I positively lost it and didn’t have any clue about what the professor was talking about anymore, he whispered in my ear: “Now it’s actually getting interesting!” During the break, he summed up the general idea about the zeta function and the professor said he understood it correctly.

I don’t like asking Simon how much he understands every time. I don’t think it’s a fair question to ask. We didn’t attend the practice section of the course because it didn’t match Simon’s schedule (the practice lesson started early in the morning and was impossible to combine with Simon’s late night classes from New York). Auditing a class doesn’t involve any compulsory attendance, Simon won’t be doing the exam. During the last several sessions, he was relaxed about being able to control the volume of his voice and sit quietly when necessary. It was at the uni that I heard him whisper for the first time! At the last lecture, he was treated to his favourite topic, the zeta function.

My general conclusion is that auditing a course has been a nice way to get exposed to what studying at the uni is like, even though we may have picked the wrong course in terms of difficulty level or in terms of what interests Simon at the moment (contrary to last spring, when he was all about calculus and complex numbers, he is currently investing most of his time into logic, computer science and computer electronics). He definitely still misses a lot of fundamental knowledge, especially in integral calculus, but by now I’m familiar with his learning style and know that he will come back to what he hasn’t dealt with properly when the time is ripe, at the new turn of the spiral, so to speak.

I know attending classes won’t be Simon’s primary source of knowledge as he learns best through self-study (mainly videos and books), but such experiences are definitely going to mean something both in terms of personal growth and mathematical thinking. “Do you want to audit a more fundamental calculus or integral calculus class here at the uni?” I asked him the other day. “No, of course not! I can just learn that on Brilliant!” he answered. “A course on sequences perhaps, as suggested by one of the professors?” – “No, I don’t want to”, – Simon replied.

Maybe we’ll be back at the uni at a later stage, with more practical discussion involved instead of passive listening, and in a subject/at a level he feels less timid to actively contribute to that discussion. What would also help is if there was a more official way to follow university courses for bright young minds like Simon. At the moment, it’s only possible as a personal favour or if I sign myself in and take Simon along, which contributed to Simon’s timidity and being afraid to feel present.

We’ll just be taking it one step at a time, grateful for the freedom that we have. My very special thanks go to Simon’s math professor who has a kind and courageous heart. He has also signed his newly published book for Simon:

Faculty of Mathematics in Antwerp
Can you see Simon?
Simon extremely nervous on the first day
Several weeks later, much more relaxed
“”Now it’s actually getting interesting!”
“I know where this is going!”
Computer Science, Good Reads, Logic, Machine Learning, Notes on everyday life, Philosophy, Set the beautiful mind free

A Universal Formula for Intelligence

Is there an equation for intelligence? Yes. It’s F = T ∇ Sτ.

Prior to a World Science Scholars live session on November 25, Simon had been asked to watch this TED talk given by a prominent computer scientist and entrepreneur, Alex Wissner-Gross, on intelligent behavior and how it arises. Upon watching the talk, Simon and I have discovered that the main idea presented by Wissner-Gross can serve as a beautiful scientific backbone to self-directed learning and explain why standardized and coercive instruction contradicts the very essence of intelligence and learning.

Alex Wissner-Gross:

What you’re seeing is probably the closest equivalent to an E = mc² for intelligence that I’ve seen. So what you’re seeing here is a statement of correspondence that intelligence is a force, F, that acts so as to maximize future freedom of action. It acts to maximize future freedom of action, or keep options open, with some strength T, with the diversity of possible accessible futures, S, up to some future time horizon, tau. In short, intelligence doesn’t like to get trapped. Intelligence tries to maximize
future freedom of action and keep options open.
And so, given this one equation, it’s natural to ask, so what can you do with this? Does it predict artificial intelligence?

Recent research in cosmology has suggested that universes that produce more disorder, or “entropy,” over their lifetimes should tend to have more favorable conditions for the existence of intelligent
beings such as ourselves. But what if that tentative cosmological connection between entropy and intelligence hints at a deeper relationship? What if intelligent behavior doesn’t just correlate with the production of long-term entropy, but actually emerges directly from it?

As an example, Wissner-Gross went on to demonstrate a software engine called Entropica, designed to maximize the production of long-term entropy of any system that it finds itself in. Entropica was able to pass multiple animal intelligence tests, play human games, and even earn money trading stocks, all without being instructed to do so. Note that Entropica wasn’t given learning goals, it simply decided to learn to balance a ball on a pole (just like a child decides to stand upright), decided to use “tools”, decided to apply cooperatvive ability in a model experiment (just like animals sometimes pull two cords simultaneously to release food), taught itself to play games, network orchestration (keeping up connections in a network), solve logistical problems with the use of a map. Finally, Entropica spontaneously discovered and executed a buy-low, sell-high strategy on a simulated range traded stock, successfully growing assets. It learned risk management.

The urge to take control of all possible futures is a more fundamental principle than that of intelligence, that general intelligence may in fact emerge directly from this sort of control-grabbing, rather than vice versa.

In other words, if you give the agent control, it becomes more intelligent.

“How does it seek goals? How does the ability to seek goals follow from this sort of framework? And the answer is, the ability to seek goals will follow directly from this in the following sense: just like you would travel through a tunnel, a bottleneck in your future path space, in order to achieve many other diverse objectives later on, or just like you would invest in a financial security, reducing your short-term liquidity in order to increase your wealth over the long term, goal seeking emerges directly from a long-term drive to increase future freedom of action”.

The main concept we can pass on to the new generation to help them build artificial intelligences or to help them understand human intelligence, according to Alex Wissner-Gross is the following: “Intelligence should be viewed as a physical process that tries to maximize future freedom of action and avoid constraints in its own future. Intelligence is a physical process that resists future confinement”.

Simon’s reaction to Alex Wissner-Gross’s TED Talk was: “But this means school only makes you less intelligent!” (in the sense that school reduces your chances at seeking goals yourself, introduces constraints on your future development).

Simon asking his question during the live session with neuroscientist Suzana Herculano-Houzel

During the actual live session, neuroscientist Suzana Herculano-Houzel, famous for inventing a method to count the exact number of neurones in the human brain and comparative studies of various species, defined intelligence as behavioral and cognitive flexibility. Flexibility as a choice to do something else than what would happen inevitably, no longer being limited to purely responding to stimuli. Flexibility in decisions that allow you to stay flexible. Generically speaking, the more flexibility the more intelligence.

Animals with a cerebral cortex gained a past and a future, Professor Herculano-Houzel explained. Learning is one of the results of flexible cognition. Here learning is understood as solving problems. Hence making predictions and decisions is all about maximizing future flexibility, which in turn allows for more intelligence and learning. This is very important guideline for educational administrations, governments and policy makers: allowing for flexibility. There is a problem with defining intelligence as producing desired outcomes, Herculano-Houzel pointed out while answering one of the questions from students.

Replying Simon’s question about whether we can measure intelligence in any way and what the future of intelligence tests could be like, Professor Herculano-Houzel said she really liked Simon’s definition of IQ testing as a “glorified dimensionality reduction”. Simon doesn’t believe anything multidimensional fits on a bell curve and can possibly have a normal distribution.

Professor Herculano-Houzel’s answer:

Reducing a world of capacities and abilities into one number, you can ask “What does that number mean?” I think you’d find it interesting to read about the history of the IQ test, how it was developed and what for, and how it got coopted, distorted into something else entirely. It’s a whole other story. To answer your question directly, can we measure intelligence? First of all, do you have a definition for intelligence? Which is why I’m interested in pursuing this new definition of intelligence as flexibility. If that is an operational definition, then yes, we can measure flexibility. How do we measure flexibility?

Professor went on to demonstrate several videos of researches giving lemurs and dogs pieces of food partially covered by a plastic cylinder. The animals would have to figure it out on their own how to get to the treat.

You see, the animal is not very flexible, trying again and again, acting exactly as before. And the dog that has figured it out already made its behavior flexible. It can be measured how long it takes for an animal to figure out that it has to be flexible, which you could call problem solving. Yes, I think there are ways to measure that and it all begins with a clear definition of what you want to measure.

As a side note, Professor Herculano-Houzel also mentioned in her course and in her live session that she had discovered that a higher number of neurons in different species was correlated with longevity. Gaining flexibility and a longer life, it’s like having the cake and eating it! We are only starting to explore defining intelligence, and it’s clear that the biophysical capability (how many neurons one has) is only a starting point. It is through our experiences of the world that we gain our ability and flexibility, that is what learning is all about, Professor concluded.

Coding, Computer Science, Experiments, JavaScript, Logic, Murderous Maths, Simon teaching, Simon's sketch book

Nash Equilibrium

Simon explaining the Nash Equilibrium with a little game in p5.js. Play it yourself at: https://editor.p5js.org/simontiger/sketches/lfP4dKGCs
Inspired by TedEd video Why do competitors open their stores next to one another? by Jac de Haan.

Computer Science, Good Reads, Milestones, Notes on everyday life, Set the beautiful mind free

Simon found a sentence in Stephen Wolfram’s book that sums it all up!

Stephen Wolfram, A New Kind of Science, p.364

“When the overall behavior is complex, it becomes impossible to characterize it in any complete way by just a few numbers”, Stephen Wolfram writes in A New Kind of Science. Simon: “This is like the essence of my life!”

Contributing, Group, Math Riddles, Milestones, Murderous Maths, Notes on everyday life, Set the beautiful mind free, Simon teaching, Simon's sketch book

MathsJam Antwerp 20 November 2019. A Blast and a Responsibility.

Today, Simon returned to a problem he first encountered at a MathsJam in summer: “Pick random numbers between 0 and 1, until the sum exceeds 1. What is the expected number of numbers you’ll pick?” Back in June, Simon already knew the answer was e, but his attempt to prove it didn’t quite work back then. Today, he managed to prove his answer!

The same proof in a more concise way:

At MathsJam last night, Simon was really eager to show his proof to Rudi Penne, a professor from the University of Antwerp who was sitting next to Simon last time he gave it a go back in June. Rudi kept Simon’s notes and told me he really admired the way Simon’s reasoning spans borders between subjects (the way Simon can start with combinatorics and jump to geometry), something that many students nurtured within the structured subject system are incapable of doing, Rudi said. Who needs borders?

Later the same evening, Simon had a blast demonstrating the proof to a similar problem to a larger grateful and patient audience, including Professor David Eelbode. The first proof was Simon’s own, the second problem (puzzle with a shrinking bullseye) and proof came from Grant Sanderson (3Blue1Brown) on Numberphile.

“Don’t allow any constraints to dull his excitement and motivation!” Rudi told me as Simon was waiting for us to leave. “That’s a huge responsibility you’ve got there, in front of the world”.

Curent Events, Electricity, Electronics, Engineering, Physics, Simon's sketch book, Together with sis

Discussing the news: dangers of shorting your mobile

Today we have heard about a new accident involving a teenager electrocuted by her mobile phone. Luckily, this time it was not a lethal case, but a quick search on the web has revealed that this is no joke: several teens have died in just a few years because they were either holding their phone with wet hands while the phone was being charged at the same time, or dropped their phone into the bath tub while the phone was plugged in, or because they were using wired headphones while charging their phone!

At first Simon and I didn’t believe this could be so dangerous, as he knew for sure that a mobile phone adaptor always has a voltage control built into it that reduces the voltage from 220V to something like 5 to 20V. But then we dove into it and found out that apparently, once a short circuit occurs, the adaptor’s voltage control unit also malfunctions and lets the 220V current through!

Simon’s drawing of the adaptor

Murderous Maths, Notes on everyday life, Simon's sketch book

The beauty of the Cubic Formula

One of Simon’s most beloved sources of knowledge is the Welch Labs channel. Recently he has been rewatching the series about imaginary numbers and the history of their discovery. Did you know that came about because of the Cubic Formula?

The proof of the Cubic Formula is a bit longer than that of the Quadratic Formula (on the yellow sheet)
Crafty, Math and Computer Science Everywhere, Notes on everyday life, Simon makes gamez, Simon's sketch book, Together with sis

Sinterklaas math game with “gingerbread buttons”

It’s Sinterklaas season in the Dutch-speaking world and, of course, as we have started baking the traditional spiced cookies called kruidnoten (“gingerbread buttons”) Simon didn’t want to miss an opportunity to play a version of peg solitaire with eatable pieces!

Simon has baked these himself (together with Neva)
the winning strategy
Simon mixing the right proportion of spices, grinding clove (then adding nutmeg, white pepper, ginger, cardamom and cinnamon)
Computer Science, Crafty, Logic, Simon's sketch book

Simon crafting a search engine with sticky notes

Simon working on a simplified version of a search engine, including just a few documents, and performing calculations to determine how many searches one should do to make creating an index of all the documents efficient (something he has picked up in Brilliant.org’s Computer Science course.

screenshot from Brilliant.org’s Computer Science course