Coding, Community Projects, Contributing, Geometry Joys, Group, live stream, Milestones, Murderous Maths, Notes on everyday life, Physics, Python, Simon's Own Code

Live Session with Stephen Wolfram and the Wolfram Demo Project, World Science Scholars.

Simon has completed the course A New Kind of Science with Stephen Wolfram and the World Science Scholars program. Which doesn’t mean he is done with digging deep into Wolfram’s groundbreaking new kind of science! (As a matter of fact, he is still reading Wolfram’s 1500-page book. And as Professor Wolfram told Simon during the live session, there’s nothing in the book that no longer holds).

Simon happy after a major break-through in his demo project, hoping to present his findings to Stephen Wolfram the same evening

At the live session, a few scholars including Simon were planning to present their Wolfram Language demos, but Professor Wolfram was so inspired by his current research that he decided to share his latest discoveries instead (he is tiptoeing closer to laying the foundations of a theory that would unify all natural sciences based on his principle of computational equivalence). It was a very engaging session (even though Simon’s video camera malfunctioned, which hardly mattered).

screenshot of the live session
Danielle Rommel, who works with Professor Wolfram, told Simon she had actually been watching videos on his YouTube channel!

As for Simon’s demo project, that’s a whole story. It took Simon weeks to define what he was actually going to pick as his topic and once he had picked his topic, he didn’t know where to start (because he managed to pick an NP problem). He suggested to collaborate together with another World Science Scholar, as it was that boy who initially inspired to think in the direction of the particular open math problem. The two of them had two long video chats. (It was so much fun to observe them, they both had zero interest in small talk and went straight down to the math, without even saying hi).

Simon during a video chat with a fellow student, discussing the project
ways to write graph data that Simon shared with his fellow student during their talk

Unfortunately, after the original project presentation during the live session with Stephen Wolfram was cancelled, Simon’s partner never really replied to Simon’s chat messages (until weeks later). Simon did manage to get part of the demo done (porting a huge graph into the Wolfram Language, which required writing separate code in Python), but felt stuck later, after several attempts to color the graph failed. He ended up spending several days writing several more Python scripts. We have documented the process on video. The project has turned into a computational essay and it’s definitely still unfinished, but I’m not sure Simon will come back to it in the near future. He got a couple of minutes to present his findings at another live session last week (with a World Science Scholars teaching fellow Aaron Mertz and Rory Foulger, Education Outreach Coordinator at Wolfram Research), but was confused as he didn’t get any feedback about his findings and got the impression his main questions weren’t understood. He was also a bit annoyed with me yelling on the background about what he should do and say (I saw he was confused and was afraid his time would be cut short, so I wanted to make sure he would mention his main points). I’ve learned my lesson now and have decided not to interfere with his live performances anymore, not to put him under additional pressure.

Simon has also written to Professor Wolfram, currently awaiting his reply. His main questions were:

I was surprised to discover that no Heule or de Grey graphs exist (anymore?) built into the Wolfram Language. As part of my research, I’ve created a very long list of all the graphs the Wolfram Language knows about, and HeuleGraph is not in the list. I tried to pose this question during the short discussion of my project at the World Science Scholars live session this week, but didn’t get any feedback (I don’t think my question was understood). Yes, one is able to find images of Heule graphs in Wolfram notebooks, (like this one https://notebookarchive.org/heule-graph–2019-07-0z3zu9k/) and on Wolfram MathWorld (like here http://mathworld.wolfram.com/HeuleGraphs.html). But those are just pictures in archived notebooks, and even if I try to copy/paste the code into my own notebook, it doesn’t work.

My second question concerns coloring such a large graph in the Wolfram Language: do you think it could be possible? As I don’t know a built-in function to do that within the Wolfram Language (and I don’t think such a thing exists), I decided to try to color the graph in Python and then upload it into my Wolfram notebook. I created another Python script to make the graph easier to color, and yet another Python script to actually color all the vertices (using Breadth-First Search). The problem was: it didn’t color it with only 5 colors (but with 8)! I made a video about the making of the project, with me explaining why this task is hard for a computer to do, and even some computational complexity theory!

Timecodes: Converting to CSV: 0:00 Generating the Colors: 23:06 Some Math: 42:16 Part I Conclusion: 56:46

this video is long, but even briefly scanning through its several parts gives a thorough impression of Simon’s current math and coding abilities

The project is attempting to visualize the Hadwiger–Nelson problem from geometric graph theory: what is the minimum number of colors required to color the plane (chromatic number of the plane) such that no two points at distance 1 from each other have the same color. It’s an unsolved problem, but we know that the answer is 5, 6 or 7. In 2018, Aubrey de Grey proved that the chromatic number of the plane is at least 5. His smallest unit-distance graph with chromatic number 5 had 1581 vertices. Several smaller graphs have been found since then, a major contribution done by Marijn Heule, who has come up with his own method of reducing the size of graphs. In 2019, Heule constructed the smallest unit-distance graph with chromatic number 5 so far, with 517 vertices. (Side-note: since I decided I’m going to use the 517 graph, I have actually found a smaller Heule graph with 508 vertices, but it was of a data format that I wasn’t able to use anyway). The goal of my project was to color such a graph in Wolfram language, to create a Wolfram Demo.

In Part 2, I tried to code yet another Python script to group the graph into smaller units to make a smaller graph, and color that one, then blow each vertex back into the unit considered.

Link to Simon’s Wolfram Notebook: https://www.wolframcloud.com/obj/9795e37e-aa73-4ae6-8249-81223ffdbc7f Link to my code on GitHub: https://github.com/simon-tiger/Hadwiger-Nelson-Project-Data

Simon reading Marijn Heule’s paper “Computing Small Unit-Distance Graphs with Chromatic Number 5”

Link to Marijn Heule’s paper “Computing Small Unit-Distance Graphs with Chromatic Number 5”: https://arxiv.org/pdf/1805.12181.pdf

Coding, Computer Science, Experiments, Geometry Joys, Milestones, Murderous Maths, Simon's Own Code

Experimenting with random walks in Wolfram Mathematica

Simon’s code is published online at:
https://www.wolframcloud.com/objects/monajune0/Published/Random_walk_distribution.nb
https://www.wolframcloud.com/objects/monajune0/Published/Random_walk_distribution2D.nb

Experimenting with random walks in Wolfram Mathematica

“If I take many random walks and see what the endpoints of those random walks are, what I’ll find is a Gaussian distribution!” Simon says. In the video, he programs 1D and 2D random walks and 2D and 3D histograms to show the distribution of the endpoints​ in Wolfram Mathematica.

Coding, Milestones, Murderous Maths, Simon's Own Code, Simon's sketch book

Multiplicative Persistence in Wolfram Mathematica

Simon has tried Matt Parker’s multiplicative persistence challenge on Numberphile: by multiplying all the digits in a large number, looking for the number of steps it takes to bring that large number to a single digit. Are there numbers that require 12 steps (have the multiplicative persistence of 12)?

Simon explaining the project

Simon has worked on this for two days, creating an interface in Wolfram Mathematica. He wrote the code to make the beautiful floral shapes above, they are actually graphs of how many steps three digit numbers take to get to single digit numbers (each ”flower” has the end result at its center).

What about the numbers with many more digits than three? Simon has tried writing code to look for the multiplicative persistence of really large numbers and also came up with some efficiencies, i.e. shortcuts in the search process. He did manage to find the persistence for 2^233 (the persistence was 2):


persistence for 2^233

However after he applied one of his efficiencies to the code to be able to search through many numbers at once, the code didn’t run anymore. You can read Simon’s page about this project and see his code here:

https://www.wolframcloud.com/objects/monajune0/Published/persistence.nb

Simon writes:

277777788888899 is the smallest number with a persistence of 11.
The largest known is 77777733332222222222222222222:

This code works with a few efficiencies:
1. They’ve already checked up to 10^233, so we don’t have to check those again.
2. We can rearrange the digits, and the multiplication will be the same. So we don’t have to check any of the rearrangements of any of the numbers we’ve already checked.
3 
3a. We should never put in a 0 (a digit of the number). Because then you would be multiplying by 0, which would result in 0 in 1 step!
3b. We should also never put in a 5 and an even number. Because, in the next step, the number would be divisible both by 5 and by 2, so it’s also divisible by 10. That would put a 0 in the answer, which we saw we should never do!
3c. With similar reasoning (assuming we want to find the smallest number of the type we want), we’ll see we should never put in:
– Two 5s
– A 5 and a 7
– When we put in a… (- means anything, the order doesn’t matter):
1,- , remove the 1
2,2, put 4 instead
2,3, put 6 instead
2,4, put 8 instead
3,3, put 9 instead
So, we can reduce the search space and time collossaly, with just some logic!

Coding, Logic, Machine Learning, Milestones, Murderous Maths, Notes on everyday life, Simon's Own Code

Domain Coloring with Complex Functions in Wolfram Mathematica

Simon has been completely carried away by Wolfram Mathematica. He keeps starting new projects, just to try something out. After working on his Knot Theory book for days, and making beautiful illustrations in Wolfram, he switched over to domain coloring. The images below are some impressions of his experimenting with the color function. He hasn’t applied the complex function yet.

Another new project he started has been Poisson disc sampling.

“Wolfram is the most advanced language! It has most built-in stuff in it! At Wolfram, they are working so hard, that the knowledge base is changing every second!” Simon screams out as he pauses the Elementary Introduction to Wolfram Language book (he was reading it at first and now binge watches it as a series of video tutorials). Simon has been especially blown away by the free-form linguistic input: “From plane English it somehow computes the results and maybe even native Mathematica Syntax!” Wolfram also “has an entire section which is machine learning!”

Simon has started a free trial about a week ago, but I guess we’re buying a subscription.

Starting out
Only brightness left to do
Color function done
Coding, Geometry Joys, Good Reads, Milestones, Murderous Maths, Simon teaching, Simon's Own Code, Simon's sketch book

Simon working on a book about Knot Theory

These are just a couple of pages from Simon’s new book/ digital presentation on knot theory that he’s currently working on:

page 9
page 21

I see him scavenging the internet in search of powerful sources. So far, he has used The Knot Book, the prime links calculator, the Rolfsen Knot Table (that was no longer online and that he found in the web archives), The Knot Atlas, Paul Bourke’s website, Wikipedia of course, more Wikipedia, Wikipedia’s List of Prime Knots, Brilliant’s knots page . Simon created some images on his own, each knot with just one line of code, using the tools on the Wolfram Mathematica website. Below are Simon’s knots in the up to 6 crossings category.